alexa Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver.
Toxicology

Toxicology

Journal of Environmental & Analytical Toxicology

Author(s): Rodrguez VM, Del Razo LM, LimnPacheco JH, Giordano M, SnchezPea LC,

Abstract Share this page

Abstract Inorganic arsenic exposure via drinking water has been associated with cancer and serious injury in various internal organs, as well as with peripheral neuropathy and diverse effects in the nervous system. Alterations in memory and attention processes have been reported in exposed children, whereas adults acutely exposed to high amounts of inorganic arsenic showed impairments in learning, memory, and concentration. Glutathione (GSH) is extensively involved in the metabolism of inorganic arsenic, and both arsenite and its methylated metabolites have been shown to be potent inhibitors of glutathione reductase (GR) in vitro. Brain would be more susceptible to GR inhibition because of the decreased activities of superoxide dismutase (SOD) and catalase reported in this tissue. To investigate whether GR inhibition could be documented in vivo, we determined the activity and levels of GR in brain as well as in liver, the main organ of arsenic metabolism in mice exposed to 2.5, 5, or 10 mg/kg/day of sodium arsenite over a period of 9 days. In contrast to what has been observed in vitro, significant inhibition of the expression and activity of GR was observed only at the highest concentration used (10 mg/kg/day) in both organs. Although the disposition of arsenicals was higher in liver, significant amounts of inorganic and methylated arsenic forms were determined in the brain of exposed animals. The formation of monomethylarsenic (MMA) and dimethylarsenic (DMA) metabolites in the brain was confirmed by incubating brain slices for 24, 48, and 72 h with sodium arsenite. This article was published in Toxicol Sci and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords