alexa Glutathione S-transferase polymorphisms: cancer incidence and therapy.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Metabolomics:Open Access

Author(s): McIlwain CC, Townsend DM, Tew KD

Abstract Share this page

Abstract The super family of glutathione S-transferases (GSTs) is composed of multiple isozymes with significant evidence of functional polymorphic variation. Over the last three decades, data from cancer studies have linked aberrant expression of GST isozymes with the development and expression of resistance to a variety of chemicals, including cancer drugs. This review addresses how differences in the human GST isozyme expression patterns influence cancer susceptibility, prognosis and treatment. In addition to the well-characterized catalytic activity, recent evidence has shown that certain GST isozymes can regulate mitogen-activated protein kinases or can facilitate the addition of glutathione to cysteine residues in target proteins (S-glutathionylation). These multiple functionalities have contributed to the recent efforts to target GSTs with novel small molecule therapeutics. Presently, at least two drugs are in late-stage clinical testing. The evolving functions of GST and their divergent expression patterns in individuals make them an attractive target for drug discovery. This article was published in Oncogene and referenced in Metabolomics:Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version