alexa Glycan classification with tree kernels.
Biochemistry

Biochemistry

Journal of Glycobiology

Author(s): Yamanishi Y, Bach F, Vert JP

Abstract Share this page

Abstract MOTIVATION: Glycans are covalent assemblies of sugar that play crucial roles in many cellular processes. Recently, comprehensive data about the structure and function of glycans have been accumulated, therefore the need for methods and algorithms to analyze these data is growing fast. RESULTS: This article presents novel methods for classifying glycans and detecting discriminative glycan motifs with support vector machines (SVM). We propose a new class of tree kernels to measure the similarity between glycans. These kernels are based on the comparison of tree substructures, and take into account several glycan features such as the sugar type, the sugar bound type or layer depth. The proposed methods are tested on their ability to classify human glycans into four blood components: leukemia cells, erythrocytes, plasma and serum. They are shown to outperform a previously published method. We also applied a feature selection approach to extract glycan motifs which are characteristic of each blood component. We confirmed that some leukemia-specific glycan motifs detected by our method corresponded to several results in the literature. AVAILABILITY: Softwares are available upon request. SUPPLEMENTARY INFORMATION: Datasets are available at the following website: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/glycankernel/ This article was published in Bioinformatics and referenced in Journal of Glycobiology

Relevant Expert PPTs

Recommended Conferences

  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • International Conference on Glycobiology
    Oct 02-04, 2017 Atlanta, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords