alexa Glycosaminoglycan degradation by selected reactive oxygen species.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Fuchs B, Schiller J

Abstract Share this page

Abstract SIGNIFICANCE: Inflammatory diseases (such as arthritis) of the extracellular matrix (ECM) are of considerable socioeconomic significance. There is clear evidence that reactive oxygen species (ROS) and nitrogen species released by, for instance, neutrophils contribute to the degradation of the ECM. Here we will focus on the ROS-induced degradation of the glycosaminoglycans, one important component of the ECM. RECENT ADVANCES: The recently developed "anti-TNF-α" therapy is primarily directed against neutrophilic granulocytes that are powerful sources of ROS. Therefore, a more detailed look into the mechanisms of the reactions of these ROS is reasonable. CRITICAL ISSUES: Since both enzymes and ROS contribute to the pathogenesis of inflammatory diseases, it is very difficult to estimate the contributions of the individual species in a complex biological environment. This particularly applies as many products are not stable but only transient products that decompose in a time-dependent manner. Thus, the development of suitable analytical methods as well as the establishment of useful biomarkers is a challenging aspect. FUTURE DIRECTIONS: If the mechanisms of ECM destruction are understood in more detail, then the development of suitable drugs to treat inflammatory diseases will be hopefully much more successful. This article was published in Antioxid Redox Signal and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version