alexa GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Bois FY

Abstract Share this page

Abstract SUMMARY: Statistical inference about the parameter values of complex models, such as the ones routinely developed in systems biology, is efficiently performed through Bayesian numerical techniques. In that framework, prior information and multiple levels of uncertainty can be seamlessly integrated. GNU MCSim was precisely developed to achieve those aims, in a general non-linear differential context. Starting with version 5.3.0, GNU MCSim reads in and simulates Systems Biology Markup Language models. Markov chain Monte Carlo simulations can be used to generate samples from the joint posterior distribution of the model parameters, given a dataset and prior distributions. Hierarchical statistical models can be used. Optimal design of experiments can also be investigated. AVAILABILITY AND IMPLEMENTATION: The GNU GPL source is available at (http://savannah.gnu.org/projects/mcsim). A distribution package is at (http://www.gnu.org/software/mcsim). GNU MCSim is written in standard C and runs on any platform supporting a C compiler. Supplementary Material is available online at (http://www.gnu.org/software/mcsim). This article was published in Bioinformatics and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords