alexa Gold(III) complexes as potential antitumor agents: solution chemistry and cytotoxic properties of some selected gold(III) compounds.


Journal of Antivirals & Antiretrovirals

Author(s): Messori L, Abbate F, Marcon G, Orioli P, Fontani M,

Abstract Share this page

Abstract Gold(III) complexes generally exhibit interesting cytotoxic and antitumor properties, but until now, their development has been heavily hampered by their poor stability under physiological conditions. To enhance the stability of the gold(III) center, we prepared a number of gold(III) complexes with multidentate ligands - namely [Au(en)(2)]Cl(3), [Au(dien)Cl]Cl(2), [Au(cyclam)](ClO(4))(2)Cl, [Au(terpy)Cl]Cl(2), and [Au(phen)Cl(2)]Cl - and analyzed their behavior in solution. The solution properties of these complexes were monitored by visible absorption spectroscopy, mass spectrometry, and chloride-selective potentiometric measurements; the electrochemical properties were also studied by cyclic voltammetry and coulometry. Since all the investigated compounds exhibited sufficient stability under physiological conditions, their cytotoxic properties were tested in vitro, via the sulforhodamine B assay, on the representative human ovarian tumor cell line A2780, either sensitive or resistant to cisplatin. In most cases the investigated compounds showed relevant cell-killing properties with IC(50) values falling in the 0.2-10 microM range; noticeably most investigated gold(III) complexes were able to overcome, to a large extent, resistance to cisplatin when tested on the corresponding cisplatin-resistant cell line. The cytotoxic properties of the free ligands were also determined under the same solution conditions. Ethylenediamine, diethylenetriamine, and cyclam were virtually nontoxic (IC(50) values > 100 microM) so that the relevant cytotoxic effects observed for [Au(en)(2)]Cl(3) and [Au(dien)Cl]Cl(2) could be quite unambiguously ascribed to the presence of the gold(III) center. In contrast the phenanthroline and terpyridine ligands turned out to be even more cytotoxic than the corresponding gold(III) complexes rendering the interpretation of the cytotoxicity profiles of the latter complexes less straightforward. The implications of the present findings for the development of novel gold(III) complexes as possible cytotoxic and antitumor drugs are discussed.
This article was published in J Med Chem and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version