alexa GRAVITY IN CURVED PHASE-SPACES, FINSLER GEOMETRY AND TWO-TIMES PHYSICS Read More: http: doi abs 10.1142 S0217751X12500698


Journal of Physical Mathematics


Abstract Share this page

The generalized (vacuum) field equations corresponding to gravity on curved 2d-dimensional (dim) tangent bundle/phase spaces and associated with the geometry of the (co)tangent bundle TMd-1, 1(T*Md-1, 1) of a d-dim space–time Md-1, 1 are investigated following the strict distinguished d-connection formalism of Lagrange–Finsler and Hamilton–Cartan geometry. It is found that there is no mathematical equivalence with Einstein's vacuum field equations in space–times of 2d dimensions, with two times, after a d+d Kaluza–Klein-like decomposition of the 2d-dim scalar curvature R is performed and involving the introduction of a nonlinear connection . The physical applications of the 4-dim phase space metric solutions found in this work, corresponding to the cotangent space of a 2-dim space–time, deserve further investigation. The physics of two times may be relevant in the solution to the problem of time in quantum gravity and in the explanation of dark matter. Finding nontrivial solutions of the generalized gravitational field equations corresponding to the 8-dim cotangent bundle (phase space) of the 4-dim space–time remains a challenging task.

This article was published in International Journal of Modern Physics A and referenced in Journal of Physical Mathematics

Relevant Expert PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version