alexa Growth arrest and induction of apoptotic and non-apoptotic programmed cell death by, Physalis minima L. chloroform extract in human ovarian carcinoma Caov-3 cells.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Ooi KL, Muhammad TS, Sulaiman SF

Abstract Share this page

Abstract ETHNOPHARMACOLOGICAL RELEVANCE: The decoction of the whole plant of Physalis minima L. is traditionally consumed to treat cancer. Its anticancer property has been previously verified (using in vitro cytotoxicity assays) against NCI-H23 lung, CORL23 lung and MCF7 breast cancer cell lines but the mechanism underlying the anticancer potency towards ovarian carcinoma cells remain unclear. AIM OF THE STUDY: The present study is aimed to systematically determine the cytotoxicity and possible cell death mechanism elicited by the chloroform extract of Physalis minima in human ovarian Caov-3 carcinoma. MATERIALS AND METHODS: Cytotoxicity of the extract was measured using the methylene blue assay. The mechanism of cell death was determined using four independent methods, namely DeadEnd assay to label the DNA fragmentation nuclei cells, RT-PCR analysis to determine the mRNA expression level of three apoptotic genes (c-myc, p53 and caspase-3 genes), Transmission Electron Microscope (TEM) analysis to describe the ultra structural characteristics and annexin V and propidium iodide staining to confirm the types and stages of cell deaths. RESULTS: Cytotoxicity screening of the extract on Caov-3 cells exhibited concentration- and time-dependent inhibitory effects. A combination of apoptotic and autophagic programmed cell death was detected. The apoptotic characteristic was initially determined by DNA fragmentation followed by the expression of c-myc and p53 genes that was much earlier than caspase-3. Apoptotic ultra structural changes (including clumping and magination of chromatin, blebbing and convolution of nucleus membrane and formation of apoptotic bodies) and autophagy (Type II non-apoptotic programmed cell death) with distinct vacuolated morphology were detected in TEM analysis. The existence of these programmed cell deaths was then corroborated using annexin V and propidium iodide staining. CONCLUSIONS: The chloroform extract of Physalis minima exerted anticancer effect due to a combination of apoptotic and autophagic cell death mechanisms on Caov-3 cells. The induction of these programmed cell deaths was mediated via c-myc, p53 and caspase-3 dependent pathway. The results could provide a valuable insight in cancer therapy. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved. This article was published in J Ethnopharmacol and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords