alexa H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Colussi C, Albertini MC, Coppola S, Rovidati S, Galli F,

Abstract Share this page

Abstract H2O2 treatment on U937 cells leads to the block of glycolytic flux and the inactivation of glyceraldehyde-3-phosphate-dehydrogenase by a posttranslational modification (possibly ADP-ribosylation). Glycolysis spontaneously reactivates after 2 h of recovery from oxidative stress; thereafter cells begin to undergo apoptosis. The specific ADP-ribosylation inhibitor 3-aminobenzamide inhibits the stress-induced inactivation of glyceraldehyde-3-phosphate-dehydrogenase and the block of glycolysis; concomitantly, it anticipates and increases apoptosis. Exogenous block of glycolysis (i.e., by culture in glucose-free medium or with glucose analogs or after NAD depletion), turns the transient block into a stable one: this results in protection from apoptosis, even when downstream cell metabolism is kept active by the addition of pyruvate. All this evidence indicates that the stress-induced block of glycolysis is not the result of a passive oxidative damage, but rather an active cell reaction programmed via ADP-ribosylation for cell self-defense. This article was published in FASEB J and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version