alexa Haploinsuffciency for Znf9 in Znf9+ - mice is associated with multiorgan abnormalities resembling myotonic dystrophy.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Chen W, Wang Y, Abe Y, Cheney L, Udd B,

Abstract Share this page

Abstract Myotonic dystrophy type 2 is caused by a (CCTG)/(CCUG)n repeat expansion in the first intron of the ZNF9 gene. The pathomechanism for the myotonic dystrophies is not well understood and the role of ZNF9 in myotonic dystrophy type 2 pathogenesis has not been fully clarified. We characterized Znf9+/- mice, in which the expression of Znf9 was significantly decreased, and found that their phenotype reflects many of the features of myotonic dystrophy, including muscle histological morphology, and myotonic discharges and heart conduction abnormalities, shown by electromyography and electrocardiogram analysis, respectively. Znf9 is normally highly expressed in heart and skeletal muscle, where skeletal muscle chloride channel 1 (Clc1) plays an important role. Clc1 expression was dramatically decreased in Znf9+/- mice. Znf9 transgenic mice raised Znf9 and Clc1 expression and rescued the myotonic dystrophy phenotype in Znf9+/- mice. Our results suggest that the Znf9 haploinsufficiency contributes to the myotonic dystrophy phenotype in Znf9+/- mice. This article was published in J Mol Biol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords