alexa Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization.
Microbiology

Microbiology

Applied Microbiology: Open Access

Author(s): Ou CC, Lin SL, Tsai JJ, Lin MY

Abstract Share this page

Abstract Heat-killed lactic acid bacteria not only possess immunomodulatory functions but also provide the advantages of longer product shelf life, easier storage, and more convenient transportation. To establish appropriate heat treatments for the industrial preparation of probiotics with immunomodulatory effects, 4 different heat treatments were used to kill 11 strains of lactic acid bacteria. Comparisons among the strains and with viable forms were carried out in terms of immunomodulatory activity and adhesion to Caco-2 cells. Field-emission scanning electron microscope (FE-SEM) was employed to observe morphological changes in bacteria after heating. Among the 11 viable strains, Lactobacillus gasseri AI-88 was the strongest inducer of interferon-gamma (IFN)-γ and interleukin (IL)-12p70 production. However, after heat treatments its stimulatory ability was attenuated. Heat-killed Enterococcus faecalis YM-73 and Lactobacillus salivarius AP-32 strains showed enhanced stimulation of IFN-γ and IL-12p70 secretion and coincidental decrease in IL-13 production. The adhesion of lactic acid bacteria to Caco-2 cells decreased with increases in temperature. However, heat exposure did not influence immunomodulatory activity. With rising temperature, roughness and unevenness of bacterial cell surfaces increased significantly. The results indicated that heat-killed E. faecalis YM-73 and L. salivarius AP-32 have immunomodulatory ability via increased Th1-associated cytokines and reduced Th2-associated cytokines, switching the immune response from a Th2 toward a Th1 response. These 2 heat-killed strains have the potential for development as commercial products. © 2011 Institute of Food Technologists® This article was published in J Food Sci and referenced in Applied Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords