alexa Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs.
Molecular Biology

Molecular Biology

Cell & Developmental Biology

Author(s): Choi KS, Harfe BD

Abstract Share this page

Abstract The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.
This article was published in Proc Natl Acad Sci U S A and referenced in Cell & Developmental Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version