alexa HEK 293 cell suspension culture using fibronectin-adsorbed polymer nanospheres in serum-free medium.
Physics

Physics

Fluid Mechanics: Open Access

Author(s): Ryu JH, Kim SS, Cho SW, Choi CY, Kim BS

Abstract Share this page

Abstract Previously, we reported on suspension culture of anchorage-dependent animal cells using plain polymer nanospheres in serum-containing medium. For commercial cell culture, it is more advantageous to use serum-free medium than serum-containing medium. To culture anchorage-dependent animal cells using polymer nanospheres in serum-free medium, the nanospheres need to be coated with cell adhesion proteins. In this study, we utilized fibronectin-adsorbed polymer nanospheres for suspension culture of anchorage-dependent animal cells in serum-free medium. Fibronectin was adsorbed onto poly(lactic-co-glycolic acid) nanospheres (433 nm in average diameter) by immersing the nanospheres in fetal bovine serum. The nanospheres were used to culture human embryonic kidney (HEK) 293 cells in serum-free medium in stirred suspension bioreactors. Nanospheres attached between HEK 293 cells and promoted cell aggregate formation compared with culture without nanospheres. Most cells in the aggregates were viable over a 10-day culture period. Importantly, the use of poly(lactic-co-glycolic acid) nanospheres promoted the cell growth significantly, compared with culture without nanospheres (3.8- vs 1.8-fold growth). The nanosphere culture method developed in this study removes the time-consuming and costly process of adaptation of anchorage-dependent animal cells to suspension culture in serum-free medium. This culture method may be useful for the large-scale suspension culture of various types of anchorage-dependent animal cells in serum-free medium. This article was published in J Biomed Mater Res A and referenced in Fluid Mechanics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords