alexa Hemocompatibility of nitrogen-doped, hydrogen-free diamond-like carbon prepared by nitrogen plasma immersion ion implantation-deposition.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutical Regulatory Affairs: Open Access

Author(s): Kwok SC, Yang P, Wang J, Liu X, Chu PK

Abstract Share this page

Abstract Amorphous hydrogenated carbon (a-C:H) has been shown to be a potential material in biomedical devices such as artificial heart valves, bone implants, and so on because of its chemical inertness, low coefficient of friction, high wear resistance, and good biocompatibility. However, the biomedical characteristics such as blood compatibility of doped hydrogen-free diamond-like carbon (DLC) have not been investigated in details. We recently began to investigate the potential use of nitrogen-doped, hydrogen-free DLC in artificial heart valves. In our experiments, a series of hydrogen-free DLC films doped with nitrogen were synthesized by plasma immersion ion implantation-deposition (PIII-D) utilizing a pulsed vacuum arc plasma source and different N to Ar (FN/FAr) gas mixtures in the plasma chamber. The structures and properties of the film were evaluated by Raman spectroscopy, Rutherford backscattering spectrometry (RBS), and X-ray photoelectron spectroscopy (XPS). To assess the blood compatibility of the films and the impact on the blood compatibility by the presence of nitrogen, platelet adhesion tests were conducted. Our results indicate that the blood compatibility of both hydrogen-free carbon films (a-C) and amorphous carbon nitride films are better than that of low-temperature isotropic pyrolytic carbon (LTIC). The experimental results are consistent with the relative theory of interfacial energy and surface tension including both dispersion and polar components. Our results also indicate that an optimal fraction of sp2 bonding is desirable, but an excessively high nitrogen concentration degrades the properties to an extent that the biocompatibility can be worse than that of LTIC. Copyright 2004 Wiley Periodicals, Inc. This article was published in J Biomed Mater Res A and referenced in Pharmaceutical Regulatory Affairs: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version