alexa Hemophilia A mutations associated with 1-stage 2-stage activity discrepancy disrupt protein-protein interactions within the triplicated A domains of thrombin-activated factor VIIIa.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Pipe SW, Saenko EL, Eickhorst AN, KemballCook G, Kaufman RJ

Abstract Share this page

Abstract Thrombin-activated factor VIII (FVIIIa) is a heterotrimer with the A2 subunit (amino acid residues 373-740) in a weak ionic interaction with the A1 and A3-C1-C2 subunits. Dissociation of the A2 subunit correlates with inactivation of FVIIIa. Patients with hemophilia A have been described whose plasmas display a discrepancy between their FVIII activities, where the 1-stage activity assay displays greater activity than the 2-stage activity assay. The molecular basis for one of these mutations, (ARG)531(HIS), is an increased rate of A2 subunit dissociation. Examination of a homology model of the A domains of FVIII predicted (ARG)531 to lie at the interface of the A1 and A2 subunits and stabilize their interaction. Indeed, patients with mutations either directly contacting (ARG)531 ((ALA)284(GLU), (ALA)284(PRO)) or closely adjacent to the A1-A2 interface in the tightly packed hydrophobic core ((SER)289(LEU)) have the same phenotype of 1-stage/2-stage discrepancy. The (ALA)284(GLU) and (SER)289(LEU) mutations in FVIII were produced by transfection of COS-1 monkey cells. Compared to FVIII wild-type both mutants had reduced specific activity by 1-stage clotting activity and at least a 2-fold lower activity by 2-stage analysis (COAMATIC), similar to the reported clinical data. Analysis of immunoaffinity purified (ALA)284(GLU) and (SER)289(LEU) proteins in an optical biosensor demonstrated that A2 dissociation was 3-fold faster for both FVIIIa mutants compared to FVIIIa wild-type. Therefore, these mutations within the A1 subunit of FVIIIa introduce a similar destabilization of the FVIIIa heterotrimer compared to the (ARG)531(HIS) mutation within the A2 subunit and support that these residues stabilize the A domain interface of FVIIIa.
This article was published in Blood and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version