alexa Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Wang Y, Xin D, Liu K, Zhu M, Xiang J

Abstract Share this page

Abstract We have synthesized a series of novel prodrugs consisting of amphiphilic heparin-paclitaxel conjugates. Each prodrug in the series consists of a succinylated-heparin carrier conjugated to paclitaxel via a single amino acid spacer, either valine, leucine, or phenylalanine (prodrug1, prodrug2, and prodrug3, respectively). Unlike physically encapsulated drugs, these prodrugs can self-assemble to form nanoparticles in aqueous solution while still maintaining structural integrity for loading parent drug due to the dual hydrophilic/hydrophobic nature of the carrier and drug compound. The structure of prodrugs has been characterized by 1H NMR, FT-IR, and GPC. Their morphology has been investigated by SEM. Our results show that these self-assembled nanoparticles have a narrow size distribution (140-180 nm) and form an approximately spherical shape composed of a paclitaxel core and carrier shell. The anticoagulant activity of all the prodrugs is sharply decreased compared to that of heparin, as measured by activated partial thromboplastin time (aPTT), thereby reducing the risk of severe hemorrhagic complication during systemic administration. Furthermore, the prodrugs exhibit better in vitro cell inhibition for MCF-7 cells than free paclitaxel. Flow cytometric analyses (FCM) have shown that MCF-7 cells treated with prodrugs are arrested in the G(2)/M phase of the cell cycle. Meanwhile, these three prodrugs each exhibit unique hydrolysis properties under various physiological or plasma conditions. In particular, prodrug2 with leucine spacer may result in favorable hydrolysis of the ester bond between the amino acid and paclitaxel under physiological conditions. In mice, prodrug2 shows a similar ovarian tumor growth inhibition as paclitaxel and induces no obvious body weight loss. Hence, the prepared nanoscale prodrugs are expected not only to render structural integrity to the parent drug, but also enhance targeting capacity to solid tumors. This article was published in Bioconjug Chem and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version