alexa Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Sez JC, Connor JA, Spray DC, Bennett MV

Abstract Share this page

Abstract Hepatocytes are well coupled by gap junctions, which allow the diffusion of small molecules between cells. Although gap junctions in many tissues are permeable to molecules larger than cAMP and in several preparations gap junctions pass cAMP itself, little direct evidence supports permeation by other second-messenger species. Ca2+, perhaps the smallest second messenger, would be expected to cross gap junctions, but the issue is complicated because gap-junction channels are closed when intracellular free Ca2+ concentration, [Ca2+]i, is elevated to micromolar levels or above. Inositol 1,4,5-trisphosphate (InsP3), a second messenger that can evoke Ca2+ release, might also reduce junctional permeability by this mechanism. We report here evidence for transjunctional flux of Ca2+ and InsP3 in freshly isolated pairs or small clusters of rat hepatocytes. The Ca2+ indicator fura-2 was used to monitor transjunctional diffusion of Ca2+ directly or to detect passage of InsP3 by localized Ca2+ release. Fura-2 injected as the free acid passed between cells. Injection of InsP3 or CaCl2 immediately increased [Ca2+]i in the injected cell (peak values less than 1 microM), and [Ca2+]i increased rapidly in contacting cells (within seconds). The initial rise in [Ca2+]i induced by InsP3 was greater at discrete regions in the cytoplasm of both injected and uninjected cells and was inconsistent with simple diffusion of Ca2+. In the coupled cells the regions of greatest increase were not necessarily near the contact zone. In contrast, the rise induced in [Ca2+]i by CaCl2 injection when cells were bathed in normal Ca2+ was always more diffuse than with InsP3 injection, and in cells coupled to a cell injected with CaCl2 the earliest and maximal increases occurred at the region of cell contact. This difference in distribution indicates that injected InsP3 (or an active metabolite, but not Ca2+) diffused between cells to cause localized release of Ca2+ from intracellular stores. Ca2+ injection induced a rise in [Ca2+]i in coupled cells even when cells were maintained in Ca2+-free saline, suggesting that changes in [Ca2+]i seen in adjacent cells were due to transjunctional diffusion from the injected cell and not to uptake from the extracellular solution. However, in Ca2+-free saline, [Ca2+]i distribution was nonuniform, indicating that Ca2+-releasing mechanisms contribute to the observed changes. No increase in [Ca2+]i was seen in adjacent cells when Ca2+ was injected after treatment with the uncoupling agent octanol (500 microM), which itself did not change [Ca2+]i. These data provide evidence that the second messengers Ca2+ and InsP3 can be transmitted from cell to cell through gap junctions, a process that may have an important role in tissue function.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords