alexa Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest.

Journal of Autacoids and Hormones

Author(s): Fallavollita JA, Malm BJ, Canty JM Jr

Abstract Share this page

Abstract Hibernating myocardium, characterized by reductions in flow and function at rest, has limited contractile reserve in response to increases in external workload. We hypothesized that this attenuation of function reflects an adaptive downregulation that prevents the development of metabolic evidence of ischemia during stress. To test this hypothesis, pigs were chronically instrumented with a proximal left anterior descending artery stenosis for 3 months, resulting in severe anteroapical hypokinesis with reduced resting perfusion (0.78+/-0.05 versus 0.94+/-0.07 mL x min(-1)x g(-1) in remote, P<0.01; and 0.99+/-0.08 in controls, P<0.05). Open-chest studies confirmed resting dysfunction compared with normal controls (segment shortening 9.2+/-2.2\% versus 23.5+/-1.1\%, P<0.05). Resting myocardial oxygen consumption was reduced (63+/-3 versus 77+/-6 microL x g(-1) x min(-1) in controls, P<0.05), yet lactate consumption was normal. Although subendocardial perfusion failed to increase during graded, intravenous epinephrine infusion (n=8), peak segment shortening (to 17.3+/-3.1\%, P<0.05) and oxygen consumption (to 90+/-6 microL x g(-1) x min(-1), P<0.01) increased from the depressed resting levels. There was no lactate production in hibernating myocardium, and lactate uptake increased during stress (0.7+/-0.1 to 1.2+/-0.1 micromol x g(-1) x min(-1), P<0.05). The absence of metabolic evidence of ischemia was also confirmed during atrial pacing to a rate of 120 bpm (n=8). Thus, despite reductions in function and oxygen consumption at rest, hibernating myocardium retains the ability to increase metabolism without the development of acute ischemia. This supports the hypothesis that the downregulation of oxygen consumption and function in hibernating myocardium is an adaptive response that prevents a supply-demand imbalance during submaximal increases in cardiac workload when coronary flow reserve is limited.
This article was published in Circ Res and referenced in Journal of Autacoids and Hormones

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version