alexa High current generation coupled to caustic production using a lamellar bioelectrochemical system.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Rabaey K, Btzer S, Brown S, Keller J, Rozendal RA

Abstract Share this page

Abstract Recently, bioelectrochemical systems (BESs) have emerged as a promising technology for energy and product recovery from wastewaters. To become economically viable, BESs need to (i) reach sufficient turnover rates at scale and (ii) generate a product that offsets the investment costs within a reasonable time frame. Here we used a liter scale, lamellar BES to produce a caustic solution at the cathode. The reactor was operated as a three-electrode system, in which the anode potential was fixed and power was supplied over the reactor to allow spontaneous anodic current generation. In laboratory conditions, with acetate as electron donor in the anode, the system generated up to 1.05 A (at 1.77 V applied cell voltage, 1015 A m(-3) anode volume), and allowed for the production of caustic to 3.4 wt \%, at an acetate to caustic efficiency of 61\%. The reactor was subsequently operated on a brewery site, directly using effluent from the brewing process. Currents of up to 0.38 A were achieved within a six-week time frame. Considerable fluctuations over weekly periods were observed, due to operational parameter changes. This study is the first to demonstrate effective production of caustic at liter scale, using BESs both in laboratory and field conditions. It also shows that input of power can easily be justified by product value. This article was published in Environ Sci Technol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords