alexa High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment.
General Science

General Science

Journal of Forensic Research

Author(s): DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, , DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM,

Abstract Share this page

Abstract Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8\% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology. This article was published in Microb Ecol and referenced in Journal of Forensic Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords