alexa Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans.
Immunology

Immunology

Rheumatology: Current Research

Author(s): Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A,

Abstract Share this page

Abstract OBJECTIVE: Mesenchymal stem cells from synovium have a greater proliferation and chondrogenic potential than do those from bone marrow, periosteum, fat, and muscle. This study was undertaken to compare fibrous synovium and adipose synovium (components of the synovium with subsynovium) to determine which is a more suitable source for mesenchymal stem cells, especially for cartilage regeneration, and to examine the features of adipose synovium-derived cells, fibrous synovium-derived cells, and subcutaneous fat-derived cells to determine their similarities. METHODS: Human fibrous synovium, adipose synovium, and subcutaneous fat were harvested from 4 young donors and 4 elderly donors. After digestion, the nucleated cells were plated at a density considered proper to expand at a maximum rate without colony-to-colony contact. The surface epitopes, proliferative capacity, cloning efficiency, and chondrogenic, osteogenic, and adipogenic differentiation potentials of the cells were compared. RESULTS: Fibrous synovium- and adipose synovium-derived cells were higher in STRO-1 and CD106 and lower in CD10 compared with subcutaneous fat-derived cells. Cells derived from fibrous and adipose synovium had higher proliferative potential and colony-forming efficiency compared with subcutaneous fat-derived cells, both in mixed-population and in single-cell-derived cultures. In chondrogenic assays, pellets from fibrous synovium- and adipose synovium-derived cells produced more cartilage matrix than did cell pellets from subcutaneous fat. Osteogenic ability was also higher in fibrous synovium- and adipose synovium-derived cells, whereas adipogenic potential was nearly indistinguishable among the 3 populations. Differentiation potential of the cells was similar between young and elderly donors. CONCLUSION: Cells derived from the fibrous synovium and from the adipose synovium demonstrate comparable chondrogenic potential. Adipose synovium-derived cells are more similar to fibrous synovium-derived cells than to subcutaneous fat-derived cells. This article was published in Arthritis Rheum and referenced in Rheumatology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords