alexa Highly sensitive apurinic apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Nakamura J, Walker VE, Upton PB, Chiang SY, Kow YW,

Abstract Share this page

Abstract One of the most prevalent lesions in DNA is the apurinic/apyrimidinic (AP) site, which is derived from the cleavage of the N-glycosyl bond by DNA glycosylase or by spontaneous depurination. AP sites are repaired by AP endonucleases during the process of base excision repair; however, an imbalance in this DNA repair system may cause mutations as well as cell death. We have established a sensitive and convenient slot-blot method to detect AP sites in genomic DNA using a novel aldehyde reactive probe (ARP), which reacts with the aldehydic group of ring-opened AP sites. The reaction of 1 mM of ARP with 15 microg of genomic DNA containing AP sites at 37 degrees C was completed within 1 min. The AP site-ARP complex was remarkably stable during incubation in TE buffer, even at 100 degrees C for 60 min. The sensitivity of this assay enables detection of 2.4 AP sites per 10(7) bases. By using this ARP-slot-blot assay, the rate of spontaneous depurination of calf thymus DNA was determined. Under physiological conditions, AP sites were increased at 1.54 AP sites/10(6) nucleotides/day (9000 AP sites/cell/day). This highly sensitive assay allows us to determine the endogenous level of AP sites in genomic DNA, as well as to investigate whether DNA-damaging agents cause imbalances of base excision/AP endonuclease repair in vivo and in vitro.
This article was published in Cancer Res and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords