alexa High-mobility group box 1: a novel target for treatment of Pseudomonas aeruginosa keratitis.


Journal of Microbial & Biochemical Technology

Author(s): McClellan S, Jiang X, Barrett R, Hazlett LD

Abstract Share this page

Abstract High-mobility group box 1 (HMGB1), a prototypic alarmin, mediates the systemic inflammatory response syndrome. Treatment with vasoactive intestinal peptide, an anti-inflammatory neuropeptide, downregulates proinflammatory cytokines and promotes healing in a susceptible (cornea perforates) model of Pseudomonas aeruginosa keratitis, and also significantly downregulates HMGB1 expression. Therefore, we examined targeting HMGB1 for the treatment of P. aeruginosa keratitis to avoid delivery and other issues associated with vasoactive intestinal peptide. For this, HMGB1 was silenced using small interfering RNA, whereas controls were treated with a nonspecific scrambled sequence small interfering RNA. Less disease was seen postinfection in siHMGB1 compared with control mice and was documented by clinical score and photographs with a slit lamp. Real-time RT-PCR and ELISA confirmed HMGB1 knockdown. RT-PCR analysis also revealed reduced mRNA levels of IL-1β, MIP-2, TNF-α, TLR4, and receptor for advanced glycation end products, whereas mRNA levels of anti-inflammatory TLRs single Ig IL-1-related receptor and ST2 were increased significantly. HMGB1 knockdown also decreased IL-1β and MIP-2 proteins, reducing polymorphonuclear cell number in the infected cornea. mRNA and protein levels of CXCL12 and CXCR4, as well as mononuclear cells, were reduced significantly after HMGB1 knockdown. Ab neutralization of HMGB1, infection with a clinical isolate, and recombinant HMGB1 treatment of resistant mice supported the silencing studies. These data provide evidence that silencing HMGB1 promotes better resolution of P. aeruginosa keratitis by decreasing levels of proinflammatory mediators (decreasing polymorphonuclear cell infiltration), increasing anti-inflammatory TLRs, reducing CXCL12 (preventing HMGB1/CXCL12 heterodimer formation), and signaling through CXCR4, reducing monocyte/macrophage infiltration. Copyright © 2015 by The American Association of Immunologists, Inc.
This article was published in J Immunol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version