alexa High-performance carbon composite electrode based on an ionic liquid as a binder.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Maleki N, Safavi A, Tajabadi F

Abstract Share this page

Abstract Ionic liquid, n-octylpyridinum hexafluorophosphate (OPFP) has been used to fabricate a new carbon composite electrode with very attractive electrochemical behavior. This type of carbon electrode has been constructed using graphite mixed with OPFP as the binder. The electrode has combined advantages of edge plane characteristics of carbon nanotubes and edge plane pyrolytic graphite electrodes together with the low cost of carbon paste electrodes and robustness of metallic electrodes. It provides a remarkable increase in the rate of electron transfer of different organic and inorganic electroactive compounds and offers a marked decrease in the overvoltage for biomolecules such as NADH, dopamine, and ascorbic acid. It also circumvents NADH surface fouling effects as well as furnishing higher current density for a wide range of compounds tested. Depending on the choice of the electrolyte, the electrode can have the ion-exchange property and adsorptive characteristics of clay-modified electrodes. The proposed electrode thus allows sensitive, low-potential, simple, low-cost, and stable electrochemical sensing of biomolecules and other electroactive compounds. Scanning electron microscopy images indicate significant improvement in the microstructure of the proposed electrode compared to carbon paste electrodes. Such abilities promote new opportunities for a wide range of electrochemical and biosensing applications. This article was published in Anal Chem and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version