alexa High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Diels AM, Michiels CW

Abstract Share this page

Abstract In the pharmaceutical, cosmetic, chemical, and food industries high-pressure homogenization is used for the preparation or stabilization of emulsions and suspensions, or for creating physical changes, such as viscosity changes, in products. Another well-known application is cell disruption of yeasts or bacteria in order to release intracellular products such as recombinant proteins. The development over the last few years of homogenizing equipment that operates at increasingly higher pressures has also stimulated research into the possible application of high-pressure homogenization as a unit process for microbial load reduction of liquid products. Several studies have indicated that gram-negative bacteria are more sensitive to high-pressure homogenization than gram-positive bacteria supporting the widely held belief that high-pressure homogenization kills vegetative bacteria mainly through mechanical disruption. However, controversy exists in the literature regarding the exact cause(s) of cell disruption by high-pressure homogenization. The causes that have been proposed include spatial pressure and velocity gradients, turbulence, cavitation, impact with solid surfaces, and extensional stress. The purpose of this review is to give an overview of the existing literature about microbial inactivation by high-pressure homogenization. Particular attention will be devoted to the different proposed microbial inactivation mechanisms. Further, the different parameters that influence the microbial inactivation by high-pressure homogenization will be scrutinized. This article was published in Crit Rev Microbiol and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords