alexa High-resolution serum proteomic features for ovarian cancer detection.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Conrads TP, Fusaro VA, Ross S, Johann D, Rajapakse V,

Abstract Share this page

Abstract Serum proteomic pattern diagnostics is an emerging paradigm employing low-resolution mass spectrometry (MS) to generate a set of biomarker classifiers. In the present study, we utilized a well-controlled ovarian cancer serum study set to compare the sensitivity and specificity of serum proteomic diagnostic patterns acquired using a high-resolution versus a low-resolution MS platform. In blinded testing sets, the high-resolution mass spectral data contained multiple diagnostic signatures that were superior to the low-resolution spectra in terms of sensitivity and specificity (P<0.00001) throughout the range of modeling conditions. Four mass spectral feature set patterns acquired from data obtained exclusively with the high-resolution mass spectrometer were 100\% specific and sensitive in their diagnosis of serum samples as being acquired from either unaffected patients or those suffering from ovarian cancer. Important to the future of proteomic pattern diagnostics is the ability to recognize inferior spectra statistically, so that those resulting from a specific process error are recognized prior to their potentially incorrect (and damaging) diagnosis. To meet this need, we have developed a series of quality-assurance and in-process control procedures to (a) globally evaluate sources of sample variability, (b) identify outlying mass spectra, and (c) develop quality-control release specifications. From these quality-assurance and control (QA/QC) specifications, we identified 32 mass spectra out of the total 248 that showed statistically significant differences from the norm. Hence, 216 of the initial 248 high-resolution mass spectra were determined to be of high quality and were remodeled by pattern-recognition analysis. Again, we obtained four mass spectral feature set patterns that also exhibited 100\% sensitivity and specificity in blinded validation tests (68/68 cancer: including 18/18 stage I, and 43/43 healthy). We conclude that (a) the use of high-resolution MS yields superior classification patterns as compared with those obtained with lower resolution instrumentation; (b) although the process error that we discovered did not have a deleterious impact on the present results obtained from proteomic pattern analysis, the major source of spectral variability emanated from mass spectral acquisition, and not bias at the clinical collection site; (c) this variability can be reduced and monitored through the use of QA/QC statistical procedures; (d) multiple and distinct proteomic patterns, comprising low molecular weight biomarkers, detected by high-resolution MS achieve accuracies surpassing individual biomarkers, warranting validation in a large clinical study. Copyright 2004 Society for Endocrinology
This article was published in Endocr Relat Cancer and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version