alexa High-throughput assays for promiscuous inhibitors.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK

Abstract Share this page

Abstract High-throughput screening (HTS) searches large libraries of chemical compounds for those that can modulate the activity of a particular biological target; it is the dominant technique used in early-stage drug discovery. A key problem in HTS is the prevalence of nonspecific or 'promiscuous' inhibitors. These molecules have peculiar properties, act on unrelated targets and can dominate the results from screening campaigns. Several explanations have been proposed to account for promiscuous inhibitors, including chemical reactivity, interference in assay read-out, high molecular flexibility and hydrophobicity. The diversity of these models reflects the apparently unrelated molecules whose behaviors they seek to explain. However, a single mechanism may explain the effects of many promiscuous inhibitors: some organic molecules form large colloid-like aggregates that sequester and thereby inhibit enzymes. Hits from HTS, leads for drug discovery and even several drugs appear to act through this mechanism at micromolar concentrations. Here, we report two rapid assays for detecting promiscuous aggregates that we tested against 1,030 'drug-like' molecules. The results from these assays were used to test two preliminary computational models of this phenomenon and as benchmarks to develop new models. This article was published in Nat Chem Biol and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version