alexa Hindlimb suspension increases insulin binding and glucose metabolism.
Biomedical Sciences

Biomedical Sciences

Journal of Bioanalysis & Biomedicine

Author(s): Bonen A, Elder GC, Tan MH

Abstract Share this page

Abstract After 28 days of hindlimb-suspension, insulin binding, 2-deoxy-D-glucose (2-DG) uptake, and glucose metabolism (glycolysis and glycogenesis) were determined at various insulin concentrations (0.2-30 nM) in soleus muscle of young (18-day-old) and adult (150-day-old) rats. Compared with age-matched controls the young (YS) and adult suspended (AS) rats had lower soleus and body weights and insulin levels (P less than 0.05). Per milligram of protein, insulin binding, 2-DG uptake, and the rate of glycolysis were increased by approximately 200\%, and the rate of glycogenesis was increased approximately 100\% in the YS group (P less than 0.05). Except for a reduction in glycogenesis (P less than 0.05) all other parameters also increased in the AS rats (P less than 0.05). On the basis of the whole muscle the rate of glucose metabolism (glycogenesis + glycolysis) was reduced in the YS rats (P less than 0.05), but in the AS rats glucose metabolism was similar to the controls. Thus the increased glucose metabolism (i.e., per milligram of protein) in the YS and AS groups may represent a compensatory response by atrophied muscle to attempt to sustain glucose removal from the circulation. Because greater insulin binding occurred in YS muscle [35\% slow-twitch (ST)] than in the control group (70\% ST), and greater insulin binding occurred in the AS (81\% ST) than in the control group (90\% ST), higher insulin binding capacities are not always related to a high proportion of ST muscle fibers. In conclusion, after hindlimb suspension, marked increments in insulin binding and glucose metabolism occur in the soleus muscle.
This article was published in J Appl Physiol (1985) and referenced in Journal of Bioanalysis & Biomedicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version