alexa Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Watanabe M, DykesHoberg M, Culotta VC, Price DL, Wong PC,

Abstract Share this page

Abstract The mechanisms leading to neurodegeneration in ALS (amyotrophic lateral sclerosis) are not well understood, but cytosolic protein aggregates appear to be common in sporadic and familial ALS as well as transgenic mouse models expressing mutant Cu/Zn superoxide dismutase (SOD1). In this study, we systematically evaluated the presence of these aggregates in three different mouse models (G93A, G85R, and G37R SOD1) and compared these aggregates to those seen in cases of sporadic and familial ALS. Inclusions and loss of motor neurons were observed in spinal cords of all of these three mutant transgenic lines. Since a copper-mediated toxicity hypothesis has been proposed to explain the cytotoxic gain-of-function of mutant SOD1, we sought to determine the involvement of the copper chaperone for SOD1 (CCS) in the formation of protein aggregates. Although all aggregates contained CCS, SOD1 was not uniformly found in the inclusions. Similarly, CCS-positive skein-like inclusions were rarely seen in ALS neurons. These studies do not provide strong evidence for a causal role of CCS in aggregate formation, but they do suggest that protein aggregation is a common event in all animal models of the disease. Selected proteins, such as the glutamate transporter GLT-1, were not typically observed within the inclusions. Most inclusions were positively stained with antibodies recognizing ubiquitin, proteasome, Hsc70 in transgenic lines, and some Hsc70-positive inclusions were detected in sporadic ALS cases. Overall, these observations suggest that inclusions might be sequestered into ubiquitin-proteasome pathway and some chaperone proteins such as Hsc70 may be involved in formation and/or degradation of these inclusions. This article was published in Neurobiol Dis and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords