alexa Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Murr R, Loizou JI, Yang YG, Cuenin C, Li H, , Murr R, Loizou JI, Yang YG, Cuenin C, Li H,

Abstract Share this page

Abstract DNA is packaged into chromatin, a highly compacted DNA-protein complex; therefore, all cellular processes that use the DNA as a template, including DNA repair, require a high degree of coordination between the DNA-repair machinery and chromatin modification/remodelling, which regulates the accessibility of DNA in chromatin. Recent studies have implicated histone acetyltransferase (HAT) complexes and chromatin acetylation in DNA repair; however, the precise underlying mechanism remains poorly understood. Here, we show that the HAT cofactor Trrap and Tip60 HAT bind to the chromatin surrounding sites of DNA double-strand breaks (DSBs) in vivo. Trrap depletion impairs both DNA-damage-induced histone H4 hyperacetylation and accumulation of repair molecules at sites of DSBs, resulting in defective homologous recombination (HR) repair, albeit with the presence of a functional ATM-dependent DNA-damage signalling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in Trrap-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of Trrap is due to impeded chromatin accessibility at sites of DNA breaks. Thus, these data reveal that cells may use the same basic mechanism involving HAT complexes to regulate distinct cellular processes, such as transcription and DNA repair. This article was published in Nat Cell Biol and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords