alexa Histone deacetylase is a target of valproic acid-mediated cellular differentiation.


Journal of Clinical & Cellular Immunology

Author(s): Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS

Abstract Share this page

Abstract Valproic acid (VPA), a well-established therapy for seizures and bipolar disorder, has recently been shown to inhibit histone deacetylases (HDACs). Similar to more widely studied HDAC inhibitors, VPA can cause growth arrest and induce differentiation of transformed cells in culture. Whether this effect of VPA is through inhibition of HDACs or modulation of another target of VPA has not been tested. We have used a series of VPA analogs to establish a pharmacological profile for HDAC inhibition. We find that VPA and its analogs inhibit multiple HDACs from class I and class II (but not HDAC6 or HDAC10) with a characteristic order of potency in vitro. These analogs also induce hyperacetylation of core histones H3 and H4 in intact cells with an order of potency that parallels in vitro inhibition. VPA and VPA analogs induce differentiation in hematopoietic cell lines in a p21-dependent manner, and the order of potency for induction of differentiation parallels the potencies for inhibition in vitro, as well as for acetylation of histones associated with the p21 promoter, supporting the argument that differentiation caused by VPA is mediated through inhibition of HDACs. These findings provide additional evidence that VPA, a well-tolerated, orally administered drug with extensive clinical experience, may serve as an effective chemotherapeutic agent through targeting of HDACs.
This article was published in Cancer Res and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version