alexa HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis.
Microbiology

Microbiology

Journal of Antimicrobial Agents

Author(s): Santos LO, Marinho FA, Alto EF, Vitrio BS, Alves CR,

Abstract Share this page

Abstract BACKGROUND: Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the overlap between the AIDS epidemic and leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we have investigated the effect of HIV aspartyl peptidase inhibitors (PIs) on the Leishmania amazonensis proliferation, ultrastructure, interaction with macrophage cells and expression of classical peptidases which are directly involved in the Leishmania pathogenesis. All the HIV PIs impaired parasite growth in a dose-dependent fashion, especially nelfinavir and lopinavir. HIV PIs treatment caused profound changes in the leishmania ultrastructure as shown by transmission electron microscopy, including cytoplasm shrinking, increase in the number of lipid inclusions and some cells presenting the nucleus closely wrapped by endoplasmic reticulum resembling an autophagic process, as well as chromatin condensation which is suggestive of apoptotic death. The hydrolysis of HIV peptidase substrate by L. amazonensis extract was inhibited by pepstatin and HIV PIs, suggesting that an aspartyl peptidase may be the intracellular target of the inhibitors. The treatment with HIV PIs of either the promastigote forms preceding the interaction with macrophage cells or the amastigote forms inside macrophages drastically reduced the association indexes. Despite all these beneficial effects, the HIV PIs induced an increase in the expression of cysteine peptidase b (cpb) and the metallopeptidase gp63, two well-known virulence factors expressed by Leishmania spp. CONCLUSIONS/SIGNIFICANCE: In the face of leishmaniasis/HIV overlap, it is critical to further comprehend the sophisticated interplays among Leishmania, HIV and macrophages. In addition, there are many unresolved questions related to the management of Leishmania-HIV-coinfected patients. For instance, the efficacy of therapy aimed at controlling each pathogen in coinfected individuals remains largely undefined. The results presented herein add new in vitro insight into the wide spectrum efficacy of HIV PIs and suggest that additional studies about the synergistic effects of classical antileishmanial compounds and HIV PIs in macrophages coinfected with Leishmania and HIV-1 should be performed.
This article was published in PLoS One and referenced in Journal of Antimicrobial Agents

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords