alexa HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin.
Medicine

Medicine

Advanced Techniques in Biology & Medicine

Author(s): Krishnamoorthy L, Bess JW Jr, Preston AB, Nagashima K, Mahal LK

Abstract Share this page

Abstract HIV-1 is a master at deceiving the immune system and usurping host biosynthetic machinery. Although HIV-1 is coated with host-derived glycoproteins, only glycosylation of viral gp120 has been described. Here we use lectin microarray technology to analyze the glycome of intact HIV-1 virions. We show that the glycan coat of human T cell line-derived HIV-1 matches that of native immunomodulatory microvesicles. The carbohydrate composition of both virus and microvesicles is cell-line dependent, which suggests a mechanism to rapidly camouflage the virus within the host. In addition, binding of both virus and microvesicles to antiviral lectins is enriched over the host cell, raising concern about targeting these glycans for therapeutics. This work also sheds light on the binding of HIV-1 to galectin-1, an important human immune lectin. Overall, our work strongly supports the theory that HIV-1 co-opts the exocytic pathway of microvesicles, thus potentially explaining why eliciting a protective antiviral immune response is difficult.
This article was published in Nat Chem Biol and referenced in Advanced Techniques in Biology & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords