alexa HLA class I allelic sequence and conformation regulate leukocyte Ig-like receptor binding.
Immunology

Immunology

Immunogenetics: Open Access

Author(s): Jones DC, Kosmoliaptsis V, Apps R, Lapaque N, Smith I, , Jones DC, Kosmoliaptsis V, Apps R, Lapaque N, Smith I,

Abstract Share this page

Abstract Leukocyte Ig-like receptors (LILRs) are a family of innate immune receptors predominantly expressed by myeloid cells that can alter the Ag presentation properties of macrophages and dendritic cells. Several LILRs bind HLA class I. Altered LILR recognition due to HLA allelic variation could be a contributing factor in disease. We comprehensively assessed LILR binding to >90 HLA class I alleles. The inhibitory receptors LILRB1 and LILRB2 varied in their level of binding to different HLA alleles, correlating in some cases with specific amino acid motifs. LILRB2 displayed the weakest binding to HLA-B*2705, an allele genetically associated with several autoimmune conditions and delayed progression of HIV infection. We also assessed the effect of HLA class I conformation on LILR binding. LILRB1 exclusively bound folded β(2)-microglobulin-associated class I, whereas LILRB2 bound both folded and free H chain forms. In contrast, the activating receptor LILRA1 and the soluble LILRA3 protein displayed a preference for binding to HLA-C free H chain. To our knowledge, this is the first study to identify the ligand of LILRA3. These findings support the hypothesis that LILR-mediated detection of unfolded versus folded MHC modulates immune responses during infection or inflammation. This article was published in J Immunol and referenced in Immunogenetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords