alexa hOGG1 Ser326Cys and XRCC1 Arg399Gln polymorphisms associated with chronic obstructive pulmonary disease.
Infectious Diseases

Infectious Diseases

Journal of Meningitis

Author(s): Yang SF, Xu YJ, Xie JG, Zhang ZX

Abstract Share this page

Abstract BACKGROUND: Cigarette-smoke induced DNA damage can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, only 20\% - 30\% of smokers develop COPD, suggesting that different degrees of DNA repair produce different outcomes in smokers, i.e., part of them develop COPD. We investigated the association between polymorphisms in DNA repair genes hOGG1 (Ser326Cys) and XRCC1 (Arg399Gln), alone or in combination, and susceptibility of COPD. METHODS: Altogether 201 COPD patients and 309 controls were recruited and frequency-matched on age and sex. hOGG1 and XRCC1 genotypes were determined by PCR-restriction fragment length polymorphism analysis. RESULTS: The risk of COPD was not significantly different among individuals with Ser/Cys and Cys/Cys genotypes compared with those with hOGG1 Ser/Ser genotype. The risk of COPD was not significantly different among individuals with Gln/Gln genotype compared with those with XRCC1 Arg/Arg genotype, but it was significantly elevated among individuals with Arg/Gln genotype (adjusted odds ratios (OR) = 1.55, 95\% confidence intervals (CI) 1.05 - 2.29, P = 0.029). Assessment of smoking status in current smokers compared with those with hOGG1 Ser/Ser genotype revealed that the risk of COPD was significantly elevated among individuals with Cys/Cys genotype (adjusted OR = 5.07, 95\% CI 1.84 - 13.95, P = 0.002). Compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Arg/Gln genotype (adjusted OR = 2.77, 95\% CI 1.52 - 5.07, P = 0.001). Assessment of smoking exposure in light smokers compared with those with hOGG1 Ser/Ser genotype showed that the risk of COPD was significantly elevated among individuals with Cys/Cys genotype (adjusted OR = 4.02, 95\% CI 1.05 - 16.80, P = 0.042). Compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Gln/Gln genotype (adjusted OR = 4.48, 95\% CI 1.35 - 14.90, P = 0.014). In heavy smokers compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Arg/Gln genotype (adjusted OR = 2.55, 95\% CI 1.42 - 4.58, P = 0.002). When hOGG1 Ser326Cys and XRCC1 Arg399Gln polymorphisms were evaluated together, compared with those with 0 - 1 of hOGG1 326Cys and XRCC1 399Gln alleles, the risk of COPD was significantly elevated among individuals with 3 - 4 of hOGG1 326Cys and XRCC1 399Gln alleles (adjusted OR = 3.18, 95\% CI 1.86 - 5.43, P = 0.000). Assessment of smoking status and smoking exposure in current/light/heavy smokers showed that the risk of COPD was significantly elevated among individuals with 3 - 4 of hOGG1 326Cys and XRCC1 399Gln alleles (adjusted OR = 8.32, 95\% CI 3.59 - 19.27, P = 0.000; OR = 5.46, 95\% CI 2.06 - 14.42, P = 0.001; OR = 2.93, 95\% CI 1.43 - 6.02, P = 0.003; respectively). CONCLUSIONS: hOGG1 Ser326Cys and XRCC1 Arg399Gln polymorphisms are associated with the susceptibility to COPD. The risk of COPD is significantly elevated among current/light smokers with hOGG1 326Cys and XRCC1 399Gln.
This article was published in Chin Med J (Engl) and referenced in Journal of Meningitis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

OMICS International Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version