alexa Homeostatic effects of TLR9 signaling in experimental colitis.
Gastroenterology

Gastroenterology

Journal of Gastrointestinal & Digestive System

Author(s): Lee J, Rachmilewitz D, Raz E

Abstract Share this page

Abstract The commensal microflora of the intestinal tract confer multiple health benefits to the host, including amelioration of inflammatory bowel disease (IBD). Yet, the exact mechanisms by which it ameliorates experimental colitis in animals and human IBD are largely unknown. We tested whether the attenuation of experimental colitis by probiotic bacteria is mediated by toll-like receptor (TLR) signaling. The severity of colitis was attenuated by delivery of nonviable, gamma-irradiated, or by viable probiotics, but not by heat-killed probiotics, in wild-type mice in mice deficient in TLR2 or TLR4. In contrast we did not observe any inhibition of experimental colitis by probiotics, in mice deficient in MyD88 or TLR9. Furthermore, administration of probiotic DNA ameliorated the severity of experimental colitis, whereas methylated probiotic DNA, calf thymus DNA, and Dnase-treated probiotics had no effect. In subsequent studies, we identified that TLR9-induced type 1 IFN mediates the anti-inflammatory effects in experimental colitis. The addition of neutralization antibodies to type 1 IFN abolished the anti-inflammatory effects, whereas the administration of recombinant IFN-beta mimicked the anti-inflammatory effects induced by TLR9 agonists. Taken together, these results indicate that the protective effects of probiotics are mainly mediated by their own DNA rather than by their metabolites or their ability to colonize the colon. These findings underscore the diverse effects of indigenous microbial TLR ligands in intestinal homeostasis and intestinal inflammation and suggest that strategies, that modulate type 1 IFN may be of therapeutic value for intestinal inflammatory conditions. This article was published in Ann N Y Acad Sci and referenced in Journal of Gastrointestinal & Digestive System

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords