alexa How does CNS address the kinetic redundancy in lumbar spine? 3 Dimensional Isometric exertions with 18 Hill muscle fascicles at L4 L5 Level.
General Science

General Science

Journal of Forensic Biomechanics

Author(s): Rashedi E, Khalaf K, Nassajian M, Nasseroleslami B, Parnianpour M

Abstract Share this page

The human motor system is organized for execution of various motor tasks in a different and flexible manner. The kinetic redundancy in the human musculoskeletal system is a significant property by which the central nervous system achieves many complementary goals. An equilibrium-based biomechanical model of isometric three-dimensional exertions of trunk muscles has been developed. Following the definition and role of the uncontrolled manifold, the kinetic redundancy concept is explored in mathematical terms. The null space of the kinetically redundant system when a certain joint moment and/or stiffness are needed is derived and discussed. The aforementioned concepts have been illustrated, using a three-dimensional three-degrees-of-freedom biomechanical model of the spine with 18 anatomically oriented Hill-type-model muscle fascicles. The considerations of stability and its consequence on the internal loading of the spine and coactivation consequences are discussed in both general and specific cases. The results can shed light on the interaction mechanisms in muscle activation patterns seen in various tasks and exertions and can provide a significant understanding for future research studies and clinical practices related to low-back disorders. Alteration of recruitment patterns in low-back-pain patients has been explained on the basis of this biomechanical analysis. The higher coactivation results in higher internal loading while providing higher joint stiffness that enhances spinal stability, which guards against spinal deformation in the presence of any perturbations.

  • To read the full article Visit
  • Subscription
This article was published in Journal of Engineering in Medicine and referenced in Journal of Forensic Biomechanics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version