alexa How is protein kinase C activated in CNS.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Huang KP, Huang FL

Abstract Share this page

Abstract Protein kinase C (PKC) enzyme family consists of the Ca(2+)-dependent and -independent subgroups of phospholipid/diacylglycerol (DAG)-stimulated serine/threonine protein kinases. These enzymes exhibit distinct cellular and subcellular localizations in CNS and subtle differences in their biochemical characteristics and substrate specificities. It is believed that each of these isoenzymes respond differently to different input signals. However, detailed mechanism for the functioning of these enzymes in vivo is largely unknown; this is in part due to the absence of specific activator, inhibitor, or substrate for each of these enzymes. Recent advances in biochemical, biophysical, and molecular characterizations have defined certain structural features important to confer the stimulatory responses of these enzymes to Ca2+, DAG or phorbol ester, and Zn2+; other features important for the binding of anionic phospholipids, Ca2+/phospholipid complexes, and cis-unsaturated fatty acids have not yet been characterized. Activation of PKC requires the increase in [Ca2+]i and DAG and/or cis-unsaturated fatty acids. Ca2+ promotes the interactions of the Ca(2+)-dependent subgroup of PKCs with membrane phosphatidylserine (PS) and the enzymes become partially active when simultaneously associated with phosphatidylinositol 4,5-bisphosphate or fully active when DAG is available. Free fatty acids such as arachidonic acid, generated by the activation of phospholipase A2, could synergize with DAG to activate the enzyme maximally. The Ca(2+)-independent subgroup of PKCs also become active when associated with PS at elevated level of DAG. Sustained activation of PKCs leads to the conversion of these enzymes into membrane-inserted and membrane protein-associated forms, which may be responsible for certain long-term neural responses. Activation of PKC results in the phosphorylation of cellular proteins; among them, several calmodulin (CaM)-binding proteins are the prominent substrates of these kinases. Phosphorylation of these proteins by PKC favors the release of CaM, which is required for the Ca2+/CaM-dependent enzymes. Thus, activation of PKCs can lead to diverse cellular responses through such amplification steps. Future studies should be directed at the elucidation of the activation of each PKC isoform in vivo to correlate with the physiological responses.
This article was published in Neurochem Int and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords