alexa How to improve the success rate of mouse cloning technology.
Genetics & Molecular Biology

Genetics & Molecular Biology

Cloning & Transgenesis

Author(s): Thuan NV, Kishigami S, Wakayama T

Abstract Share this page

Abstract It has now been 13 years since the first cloned mammal Dolly the sheep was generated from somatic cells using nuclear transfer (SCNT). Since then, this technique has been considered an important tool not only for animal reproduction but also for regenerative medicine. However, the success rate is still very low and the mechanisms involved in genomic reprogramming are not yet clear. Moreover, the NT technique requires donated fresh oocyte, which raises ethical problems for production of human cloned embryo. For this reason, the use of induced pluripotent stem cells for genomic reprogramming and for regenerative medicine is currently a hot topic in this field. However, we believe that the NT approach remains the only valid way for the study of reproduction and basic biology. For example, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, and it can generate offspring from a single cell or even a frozen dead body. Thanks to much hard work by many groups, cloning success rates are increasing slightly year by year, and NT cloning is now becoming a more applicable method. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.
This article was published in J Reprod Dev and referenced in Cloning & Transgenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords