alexa Human cancer cells commonly acquire DNA damage during mitotic arrest.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmacognosy & Natural Products

Author(s): Dalton WB, Nandan MO, Moore RT, Yang VW

Abstract Share this page

Abstract The mitotic checkpoint is a mechanism that arrests the progression to anaphase until all chromosomes have achieved proper attachment to mitotic spindles. In cancer cells, satisfaction of this checkpoint is frequently delayed or prevented by various defects, some of which have been causally implicated in tumorigenesis. At the same time, deliberate induction of mitotic arrest has proved clinically useful, as antimitotic drugs that interfere with proper chromosome-spindle interactions are effective anticancer agents. However, how mitotic arrest contributes to tumorigenesis or antimitotic drug toxicity is not well defined. Here, we report that mitotic chromosomes can acquire DNA breaks during both pharmacologic and genetic induction of mitotic arrest in human cancer cells. These breaks activate a DNA damage response, occur independently of cell death, and subsequently manifest as karyotype alterations. Such breaks can also occur spontaneously, particularly in cancer cells containing mitotic spindle abnormalities. Moreover, we observed evidence of some breakage in primary human cells. Our findings thus describe a novel source of DNA damage in human cells. They also suggest that mitotic arrest may promote tumorigenesis and antimitotic toxicity by provoking DNA damage.
This article was published in Cancer Res and referenced in Journal of Pharmacognosy & Natural Products

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version