alexa Human cytomegalovirus-encoded immune modulators partner to downregulate major histocompatibility complex class I molecules.

Author(s): Noriega VM, Tortorella D

Abstract Share this page

Abstract Throughout the course of natural evolution with its host, the human cytomegalovirus (HCMV) has developed a variety of strategies to avoid immune recognition and clearance. The major histocompatibility complex (MHC) class I antigen presentation pathway is a major target of the virus. HCMV encodes at least six gene products that modulate the processing of endoplasmic reticulum (ER)-resident MHC class I molecules. Here, we show that two virus-encoded proteins, US2 and US3, coordinate their functions toward the common goal of attenuating class I protein surface expression. In cells stably expressing both US2 and US3, class I molecules were almost completely downregulated from the cell surface. In addition, pulse-chase analysis revealed that the proteasome-dependent turnover of class I molecules occurs more rapidly in cells expressing both US2 and US3 than either US2 or US3 alone. The ability of US3 to retain class I molecules in the ER produces a target-rich environment for US2 to mediate the destruction of class I heavy chains. In fact, expression of US3 enhanced the association between US2 and class I molecules, thus encouraging their dislocation and degradation. This immune evasion strategy ensures that viral antigens are not presented on the cell surface during the early phase of HCMV infection, a critical time of replication and viral proliferation.
This article was published in J Virol and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version