alexa Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria.
Immunology

Immunology

Journal of Allergy & Therapy

Author(s): Nibbering PH, Ravensbergen E, Welling MM, van Berkel LA, van Berkel PH,

Abstract Share this page

Abstract Since human lactoferrin (hLF) binds to bacterial products through its highly positively charged N terminus, we investigated which of the two cationic domains is involved in its bactericidal activity. The results revealed that hLF lacking the first three residues (hLF(-3N)) was less efficient than hLF in killing of antibiotic-resistant Staphylococcus aureus, Listeria monocytogenes, and Klebsiella pneumoniae. Both hLF preparations failed to kill Escherichia coli O54. In addition, hLF(-3N) was less effective than hLF in reducing the number of viable bacteria in mice infected with antibiotic-resistant S. aureus and K. pneumoniae. Studies with synthetic peptides corresponding to the first 11 N-terminal amino acids, designated hLF(1-11), and fragments thereof demonstrated that peptides lacking the first three N-terminal residues are less effective than hLF(1-11) in killing of bacteria. Furthermore, a peptide corresponding to residues 21 to 31, which comprises the second cationic domain, was less effective than hLF(1-11) in killing of bacteria in vitro and in mice having an infection with antibiotic-resistant S. aureus or K. pneumoniae. Using fluorescent probes, we found that bactericidal hLF peptides, but not nonbactericidal peptides, caused an increase of the membrane permeability. In addition, hLF killed the various bacteria, most probably by inducing intracellular changes in these bacteria without affecting the membrane permeability. Together, hLF and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant S. aureus and K. pneumoniae, and the first two arginines play an essential role in this activity.
This article was published in Infect Immun and referenced in Journal of Allergy & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords