alexa Human memory strength is predicted by theta-frequency phase-locking of single neurons.
Neurology

Neurology

Bipolar Disorder: Open Access

Author(s): Rutishauser U, Ross IB, Mamelak AN, Schuman EM

Abstract Share this page

Abstract Learning from novel experiences is a major task of the central nervous system. In mammals, the medial temporal lobe is crucial for this rapid form of learning. The modification of synapses and neuronal circuits through plasticity is thought to underlie memory formation. The induction of synaptic plasticity is favoured by coordinated action-potential timing across populations of neurons. Such coordinated activity of neural populations can give rise to oscillations of different frequencies, recorded in local field potentials. Brain oscillations in the theta frequency range (3-8 Hz) are often associated with the favourable induction of synaptic plasticity as well as behavioural memory. Here we report the activity of single neurons recorded together with the local field potential in humans engaged in a learning task. We show that successful memory formation in humans is predicted by a tight coordination of spike timing with the local theta oscillation. More stereotyped spiking predicts better memory, as indicated by higher retrieval confidence reported by subjects. These findings provide a link between the known modulation of theta oscillations by many memory-modulating behaviours and circuit mechanisms of plasticity. This article was published in Nature and referenced in Bipolar Disorder: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords