alexa Human mesenchymal stem stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Ylstalo JH, Bartosh TJ, Coble K, Prockop DJ

Abstract Share this page

Abstract Culturing cells in three dimension (3D) provides an insight into their characteristics in vivo. We previously reported that human mesenchymal stem/stromal cells (hMSCs) cultured as 3D spheroids acquire enhanced anti-inflammatory properties. Here, we explored the effects of hMSC spheroids on macrophages that are critical cells in the regulation of inflammation. Conditioned medium (CM) from hMSC spheroids inhibited lipopolysaccharide-stimulated macrophages from secreting proinflammatory cytokines TNFα, CXCL2, IL6, IL12p40, and IL23. CM also increased the secretion of anti-inflammatory cytokines IL10 and IL1ra by the stimulated macrophages, and augmented expression of CD206, a marker of alternatively activated M2 macrophages. The principal anti-inflammatory activity in CM had a small molecular weight, and microarray data suggested that it was prostaglandin E2 (PGE2). This was confirmed by the observations that PGE2 levels were markedly elevated in hMSC spheroid-CM, and that the anti-inflammatory activity was abolished by an inhibitor of cyclooxygenase-2 (COX-2), a silencing RNA for COX-2, and an antibody to PGE2. The anti-inflammatory effects of the PGE2 on stimulated macrophages were mediated by the EP4 receptor. Spheroids formed by human adult dermal fibroblasts produced low levels of PGE2 and displayed negligible anti-inflammatory effects on stimulated macrophages, suggesting the features as unique to hMSCs. Moreover, production of PGE2 by hMSC spheroids was dependent on the activity of caspases and NFκB activation in the hMSCs. The results indicated that hMSCs in 3D-spheroid cultures are self-activated, in part by intracellular stress responses, to produce PGE2 that can change stimulated macrophages from a primarily proinflammatory M1 phenotype to a more anti-inflammatory M2 phenotype. Copyright © 2012 AlphaMed Press.
This article was published in Stem Cells and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords