alexa Human placental brush-border membrane Na(+)-biotin cotransport.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Grassl SM

Abstract Share this page

Abstract Membrane transport pathways for transplacental transfer of the water-soluble vitamin biotin were investigated by assessing the possible presence of a Na(+)-biotin cotransport mechanism in the maternal-facing membrane of human placental epithelial cells. The presence of Na(+)-biotin cotransport was determined from radiolabeled tracer flux measurements of biotin uptake using preparations of purified brush-border membrane vesicles. The imposition of an inwardly directed Na+ gradient stimulated vesicle uptake of biotin to levels approximately 25-fold greater than those observed at equilibrium. The voltage sensitivity of Na+ gradient-driven biotin uptake suggested Na(+)-biotin cotransport is electrogenic occurring with net transfer of positive charge. A kinetic analysis of the activation of biotin uptake by increasing Na+ was most consistent with an interaction of Na+ at 2 sites in the transport protein. Static head determinations used to identify the magnitude of opposing driving forces bringing flux through the cotransport mechanism to equilibrium indicated a coupling ratio of 2 Na+ per biotin. Substrate specificity studies using chemical analogues of biotin suggested both the terminal carboxylic acid of the valeric acid side chain and a second nucleus of anionic charge were important determinants for substrate interaction with the cotransport protein. Initial rate determinations of biotin uptake indicate biotin interacts with a single saturable site (Km = 21 microM) with a maximal transport rate of 4.5 nmol/mg/min. The results of this study provide evidence for an electrogenic Na(+)-biotin cotransport mechanism in the maternal-facing membrane of human placental epithelial cells.
This article was published in J Biol Chem and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords