alexa Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) following whole-body exposure.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Emmen HH, Hoogendijk EM, KlppingKetelaars WA, Muijser H, Duistermaat E,

Abstract Share this page

Abstract HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) are used to replace chlorofluorocarbons (CFCs) in refrigerant and aerosol applications, including medical use in metered-dose inhalers. Production and consumption of CFCs are being phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer. The safety and pharmacokinetics of HFC 134a and HFC 227 were assessed in two separate double-blind studies. Each HFC (hydrofluorocarbon) was administered via whole-body exposure as a vapor to eight (four male and four female) healthy volunteers. Volunteers were exposed, once weekly for 1 h, first to air and then to ascending concentrations of HFC (1000, 2000, 4000, and 8000 parts per million (ppm)), interspersed with a second air exposure and two CFC 12 (dichlorodifluoromethane) exposures (1000 and 4000 ppm). Comparison of either HFC 134a or HFC 227 to CFC 12 or air gave no clinically significant results for any of the measured laboratory parameters. There were no notable adverse events, there was no evidence of effects on the central nervous system, and there were no symptoms of upper respiratory tract irritation. HFC 134a, HFC 227, and CFC 12 blood concentrations increased rapidly and in an exposure-concentration-dependent manner, although not strictly proportionally, and approached steady state. Maximum blood concentrations (C(max)) tended to be higher in males than females; in the HFC 227 study, these were statistically significantly (P < 0. 05) higher in males for each HFC 227 and CFC 12 exposure level. In the HFC 134a study, the gender difference in C(max) was only statistically significant (P < 0.05) for CFC 12 at 4000 ppm and HFC 134a at 8000 ppm. Following the end of exposure, blood concentrations declined rapidly, predominantly biphasically and independent of exposure concentration. For the HFC 134a study, the t(1/2)alpha (alpha elimination half-life) was short for both CFC 12 and HFC 134a (<11 min). The t(1/2)beta (beta elimination half-life) across all exposure concentrations was a mean of 36 and 42 min for CFC 12 and HFC 134a, respectively. Mean residence time (MRT) was an overall mean of 42 and 44 min for CFC 12 and HFC 134a, respectively. In the HFC 227 study, t(1/2)alpha for both CFC 12 and HFC 227, at each exposure level, was short (<9 min) and tended to be lower in males than females. For CFC 12 mean t(1/2)beta ranged from 23 to 43 min and for HFC 227 the mean range was 19-92 min. The values tended to be lower for females than males for HFC 227. For both CFC 12 and HFC 227, MRT was statistically significantly lower (P < 0.05) in males than females and independent of exposure concentration. For CFC 12, MRT was a mean of 37 and 45 min for males and females, respectively, and for HFC 227 MRT was a mean of 36 and 42 min, respectively. Exposure of healthy volunteers to exposure levels up to 8000 ppm HFC 134a, 8000 ppm HFC 227, and 4000 ppm CFC 12 did not result in any adverse effects on pulse, blood pressure, electrocardiogram, or lung function. Copyright 2000 Academic Press. This article was published in Regul Toxicol Pharmacol and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords