alexa Human secretory phospholipase A2 mediates decreased plasma levels of HDL cholesterol and apoA-I in response to inflammation in human apoA-I transgenic mice.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Tietge UJ, Maugeais C, LundKatz S, Grass D, deBeer FC,

Abstract Share this page

Abstract OBJECTIVE: Plasma levels of high density lipoprotein (HDL) cholesterol and apolipoprotein (apo)A-I are decreased in inflammatory states. Secretory phospholipase A2 (sPLA2), an acute-phase protein, may play a key role in the pathophysiology of this phenomenon. METHODS AND RESULTS: To investigate the effects of sPLA2 on human-like HDL particles in vivo, we generated transgenic mice overexpressing human apoA-I and human sPLA2 (apoA-I/sPLA2 mice). Compared with apoA-I mice, apoA-I/sPLA2 mice had significantly lower plasma levels of phospholipids, HDL cholesterol, and apoA-I (each P<0.01). HDL from apoA-I/sPLA2 mice was significantly depleted in phospholipids and cholesteryl esters (each P<0.001) but was enriched in protein and triglycerides (each P<0.001). As assessed by gel filtration and nondenaturing gel electrophoresis, sPLA2 overexpression in apoA-I mice resulted in a dramatic shift of the HDL particle size toward smaller particles. Furthermore, virtually all plasma sPLA2 in apoA-I/sPLA2 mice was found in association with the HDL fraction. The acute-phase response was induced in apoA-I/sPLA2 double-transgenic and apoA-I single-transgenic mice by intraperitoneal lipopolysaccharide (LPS) injection. Plasma sPLA2 was significantly increased after LPS injection in apoA-I/sPLA2 mice. Twelve hours after LPS administration, plasma total cholesterol, HDL cholesterol, apoA-I, and phospholipids were unchanged in apoA-I transgenic control mice but had decreased significantly in the apoA-I/sPLA2 mice (-57\%, -62\%, and -54\%, -61\%, respectively; each P<0.001). Both groups of mice had increased plasma levels of serum amyloid A (SAA) in response to LPS. To test the hypothesis that SAA may be an in vivo activator of sPLA2, we specifically overexpressed SAA in apoA-I/sPLA2 mice by means of liver-directed gene transfer. Despite high plasma levels of SAA, plasma lipid and lipoprotein profiles were not different than those in control mice. CONCLUSIONS: These results in a mouse model of human-like HDL indicate that sPLA2 expression significantly influences HDL particle size and composition and demonstrate that an induction of sPLA2 is required for the decrease in plasma HDL cholesterol in response to inflammatory stimuli in mice and that this effect is independent of SAA.
This article was published in Arterioscler Thromb Vasc Biol and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords