alexa Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Henning RJ, Dennis S, Sawmiller D, Hunter L, Sanberg P,

Abstract Share this page

Abstract We have previously reported that human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic, mesenchymal, and endothelial stem cells, can significantly reduce acute myocardial infarction size. To determine the mechanism whereby HUCBC increase myocyte and vascular endothelial cell survival, we treated cardiac myocytes and coronary artery endothelial cells in separate experiments with HUCBC plus culture media or culture media alone and subjected the cells to 24 h of hypoxia or normoxia. We then determined in myocytes and endothelial cells activation of the cell survival protein Akt by Western blots. We also determined in these cells apoptosis by annexin V staining and necrosis by propidium iodide staining. Thereafter, we inhibited with API, a specific and sensitive Akt inhibitor, Akt activation in myocytes and endothelial cells cultured with HUCBC during hypoxia and determined cell apoptosis and necrosis. In cells cultured without HUCBC, hypoxia only slightly activated Akt. Moreover, hypoxia increased myocyte apoptosis by ≥ 226\% and necrosis by 58\% in comparison with myocytes in normoxia. Hypoxic treatment of endothelial cells without HUCBC increased apoptosis by 94\% and necrosis by 59\%. In contrast, hypoxia did not significantly affect HUCBC. Moreover, in myocyte + HUCBC cultures in hypoxia, HUCBC induced a ≥ 135\% increase in myocyte phospho-Akt. Akt activation decreased myocyte apoptosis by 76\% and necrosis by 35\%. In endothelial cells, HUCBC increased phospho-Akt by 116\%. HUCBC also decreased endothelial cell apoptosis by 58\% and necrosis by 42\%. Inhibition of Akt with API in myocytes and endothelial cells cultured with HUCBC during hypoxia nearly totally prevented the HUCBC-induced decrease in apoptosis and necrosis. We conclude that HUCBC can significantly decrease hypoxia-induced myocyte and endothelial cell apoptosis and necrosis by activating Akt in these cells and in this manner HUCBC can limit myocardial ischemia and injury. Published by Mosby, Inc. This article was published in Transl Res and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version