alexa Humans trade off viewing time and movement duration to improve visuomotor accuracy in a fast reaching task.
Neurology

Neurology

International Journal of Neurorehabilitation

Author(s): Battaglia PW, Schrater PR

Abstract Share this page

Abstract Previous research has shown that the brain uses statistical knowledge of both sensory and motor accuracy to optimize behavioral performance. Here, we present the results of a novel experiment in which participants could control both of these quantities at once. Specifically, maximum performance demanded the simultaneous choices of viewing and movement durations, which directly impacted visual and motor accuracy. Participants reached to a target indicated imprecisely by a two-dimensional distribution of dots within a 1200 ms time limit. By choosing when to reach, participants selected the quality of visual information regarding target location as well as the remaining time available to execute the reach. New dots, and consequently more visual information, appeared until the reach was initiated; after reach initiation, no new dots appeared. However, speed accuracy trade-offs in motor control make early reaches (much remaining time) precise and late reaches (little remaining time) imprecise. Based on each participant's visual- and motor-only target-hitting performances, we computed an "ideal reacher" that selects reach initiation times that minimize predicted reach endpoint deviations from the true target location. The participant's timing choices were qualitatively consistent with ideal predictions: choices varied with stimulus changes (but less than the predicted magnitude) and resulted in near-optimal performance despite the absence of direct feedback defining ideal performance. Our results suggest visual estimates, and their respective accuracies are passed to motor planning systems, which in turn predict the precision of potential reaches and control viewing and movement timing to favorably trade off visual and motor accuracy. This article was published in J Neurosci and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords