alexa Hybrid pseudomonads engineered by two-step homologous recombination acquire novel degradation abilities toward aromatics and polychlorinated biphenyls.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Suenaga H, Nonaka K, Fujihara H, Goto M, Furukawa K

Abstract Share this page

Abstract Pseudomonas pseudoalcaligenes KF707 possesses a chromosomally encoded bph gene cluster responsible for the catabolism of biphenyl and polychlorinated biphenyls. Previously, we constructed chimeric versions of the bphA1 gene, which encodes a large subunit of biphenyl dioxygenase, by using DNA shuffling between bphA1 genes from P. pseudoalcaligenes KF707 and Burkholderia xenovorans LB400. In this study, we demonstrate replacement of the bphA1 gene with chimeric bphA1 sequence within the chromosomal bph gene cluster by two-step homologous recombination. Notably, some of the hybrid strains acquired enhanced and/or expanded degradation capabilities for specific aromatic compounds, including single aromatic hydrocarbons and polychlorinated biphenyls. This article was published in Appl Microbiol Biotechnol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords